

Synthesis and functionalization of macromolecules

Filippo Rossi Davide Moscatelli

Research topics

- polymer synthesis and functionalization

- colloids (hydrophobic and hydrophilic)

- mathematical modelling

- polymer-based formulations

- Process design requires proper understanding of all the synthetic steps involved:
 - Direct polycondensation
 - De-Polymerization
 - Ring Opening Polymerization
- Through these chemical pathways, useful materials with different properties can be produced

Biodegradable polyesters

Poly Glycolic Acid (PGA)

Poly Lactic Acid (PLA)

Poly Caprolactone (PCL)

ЮН

- Proper selection of characteristics above allows:
 - Decreasing materials cost
 - Increasing materials performances
 - Tuning materials features
- Degradation behavior is of primary importance:
 - Guides the material applications

Emulsion polymerization

Polymer characterization

- Gel permeation chromatography

- Dynamic Light Scattering

- High Pressure Liquid Chromatography

- Atomic Force Microscopy

Scan direction POLITECNICO

Surface

feature

Tip

Post-polymer functionalization

- Post-polymerization in bulk or during material processing (extrusion etc...);

- Improve materials performances for industrial applications.

Polymeric colloids: physical processes

Polymeric colloids: chemical processes

Application: spinal cord injury

In **E.U.** every year 10.000 pz out of 400 M population suffer from <u>Spinal Cord Injuries</u>

99.5% of injuries leave permanent neurological consequences.

Selective treatment

Minocycline selective treatment can reduce the inflammation of microglia cells

Mathematical modeling

Main results:

- complete control over formulation and process;
- complete control over transport phenomena having a robust and reliable modelling tool ;
- simple but based only on fundamental laws!
- -> A SMART INDUSTRIAL USE !

-> faster engineering of new devices !

distance f

[i]

[i]*

concentration

polymer matrix

N particles/cm³

reference volume

polymer pore

Polymeric hydrogels

Microwave-assisted polycondensation

ÓН

AC hydrogel

 $ROH + R'COOH \rightarrow R'COOR$

4000 3500 3000 2500 2000 1500 1000 500 wavenumber [cm⁻¹]

Formulation study

The tuning of our formulation is possible in order to adapt it at different applications:

250

0

0

20

10

30

time [min]

40

50

swell as -OH/-COOH increases (different material for different needs)

60

- optimization to develop a product ready for the market;
- satisfy market and industry needs.

"We've had a few problems going from lab scale up to full-scale commercial."

People

Active Faculties: Valentina Busini Carlo Cavallotti Marco Derudi Maurizio Masi Massimo Morbidelli Davide Moscatelli Filippo Rossi Renato Rota Giuseppe Storti

Permanent Technical Staff: Simone Gelosa

Active PhDs: approx 10

Contacts

CFA POLITECNICO MILANO 1863

Chimica Fisica Applicate

Filippo Rossi

Politecnico di Milano Department of Chemistry, Materials and Chemical Engineering "Giulio Natta"

Via Mancinelli 7, Milan, Italy

phone: +39 02 2399 3145

e-mail: filippo.rossi@polimi.it

